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ABSTRACT 
The rich interaction space of many educational games presents a 
challenge for designers and researchers who strive to help players 
achieve specific learning outcomes. Giving players a large amount 
of freedom over how they perform a complex game task makes it 
difficult to anticipate what they will do. In order to address this 
issue designers must ask: what are students doing in my game? 
And does it embody what I intended them to learn? To answer 
these questions, designers need methods to expose the details of 
student play. We describe our approach for automatic extraction 
of conceptual features from logs of student play sessions within an 
open educational game utilizing a two-dimensional context-free 
grammar. We demonstrate how these features can be used to clus-
ter student solutions in the educational game RumbleBlocks. Us-
ing these clusters, we explore the range of solutions and measure 
how many students use the designers’ envisioned solution. 
Equipped with this information, designers and researchers can 
focus redesign efforts to areas in the game where discrepancies 
exist between the designers’ intentions and player experiences.  
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1. INTRODUCTION 
Educational games are a growing sub-field of instructional tech-
nology. Researchers see video games as a compelling medium for 
instruction because they can offer students the ability to practice 
new skills within an authentic context that poses little personal 
risk [7]. These promising aspects of games have led many educa-
tional game designers to create “open games”, which allow stu-
dents to exercise creativity in how they solve problems. [12,25]. 
Open educational games are a form of exploratory learning envi-
ronment and commonly use ill-defined problems as part of their 
designs [11,19]. While the tendency toward open experiences is 
compelling for educational game designers, it presents problems 
when analyzing student learning, a necessary part of designing 
activities to foster robust learning. 

When designing an open game experience, the designer surren-
ders a degree of control over the nature and progression of the 
experience to the player [10]. This openness can be problematic to 
the designers of educational game experiences who are concerned 
that students receive some type of intended instruction and 
achieve a desired learning outcome. Educational game designers 
require a detailed picture of how students are playing a game in 
order to know if disparities exist between the designers’ intentions 
and player experiences; and, if such disparities do exist, designers 
need to know where to focus redesign efforts. 

To facilitate designers’ and researchers’ analysis of open educa-
tional games we propose a methodology for extracting conceptual 

features from student log data. We demonstrate our methodology 
in RumbleBlocks, an educational game designed to teach basic 
concepts of structural stability to young children [5]. The method 
takes as input logs of student gameplay and yields a set of concep-
tual features which describe student solutions. While some aspects 
of our approach are specific to RumbleBlocks, the general concept 
should be applicable to open educational games.  

To automatically generate features in RumbleBlocks, we use a 
four-step process that converts the log data from student play into 
feature vectors. This process, which is the primary contribution of 
this paper, consists of discretizing the log data containing student 
solutions; generating a grammar from the discretized logs; using 
the grammar to parse each solution; and converting the resultant 
parse trees into vectors that concisely represent the structural 
components of the solutions. In the following sections, we first 
describe the game RumbleBlocks and then provide the details of 
the four-step process to extract features. Afterwards, we show the 
results of using the extracted features to cluster student solutions, 
which enables the identification of misalignment between design-
er intentions and student actions.  

1.1 RumbleBlocks 
RumbleBlocks is an educational game designed to teach basic 
structural stability and balance concepts to children in kindergar-
ten through grade 3 (5-8 years old) [5]. It focuses primarily on 
three basic principles of stability: objects with wider bases are 
more stable, objects that are symmetrical are more stable, and 
objects with lower centers of mass are more stable. These princi-
ples are derived from the National Research Council’s Framework 
for New Science Educational Standards [21] and other science 
education curricula for the target age group. 
The game follows a sci-fi narrative where the player is helping a 
group of aliens who become stranded when their mother ship is 
damaged. Each level (see Figure 1 for an example level) consists 
of an alien stranded on a cliff with their deactivated space ship 
lying on the ground. The player must use an inventory of blocks 
to build a structure that is tall enough to reach the alien. In Figure 
1, the player is dragging a third block (the highlighted square 
block) from the inventory (top left) to the tower-under-
construction (bottom, center). Additionally, the player’s structure 
must also cover a series of blue “energy balls” floating in space 
which are narratively used to power the space ship, but serve to 
both guide and constrain the players’ designs. Once the student is 
confident in their design, they can place the spaceship on top of 
their tower triggering an earthquake that serves as a test of the 
tower’s stability. If, at the end of the quake, the tower is still 
standing and the spaceship is still on top, the student passes the 
level and proceeds to the next level; otherwise they start the level 
over again. 
Beyond the limits imposed by the energy ball mechanic and the 
types of available blocks, students are not very constrained in the 



designs they can create. Each level in RumbleBlocks is designed 
to emphasize a particular principle of structural stability, and thus 
has a particular solution that was envisioned by the designers. 
However, students are not required to use it, and it is even possi-
ble that students may find a solution that is better than the one that 
the designer envisioned. Throughout development, the designers 
formed an intuition for the different groups of answer types being 
used by students, but they lacked methods for understanding how 
similar two answers were, and how many different answers were 
possible for each level. While it would have been possible to ren-
der all student solutions into screenshots, it would have been in-
feasible to manually comb through the thousands of towers gener-
ated by students. 
To address this issue of understanding the kinds of solutions stu-
dents are using, we have developed a method for extracting the 
conceptual features of game states in RumbleBlocks utilizing a 
two-dimensional context-free grammar. These features allow the 
designers and researchers of RumbleBlocks to examine the differ-
ent sub-patterns that players are using in building their towers. 
The conceptual features can be used as a way of comparing dif-
ferent towers and evaluating how often students produce the an-
swer which designers expected. It also enables us to zero in on the 
solutions they did not expect. To demonstrate the utility of these 
features we perform a clustering analysis, which assigns towers to 
groups, which correspond to the different unique solution that are 
possible on each level of the game. Designers can use this analysis 
to better understand the space of student solutions. 

2. CONCEPTUAL FEATURE EXTRACTION 
The first challenge in using RumbleBlocks data, or any education-
al game data, is to convert it into a form that is amenable to analy-
sis. This task is not easy because a single state, or tower, in Rum-
bleBlocks is both continuous and two-dimensional. Previous work 
has used an empirical measure of symmetry, width-of-base, and 

center-of-mass (human selected features) to describe a tower and 
has shown that these features can be predictive of student out-
comes [9]. These features give a useful abstract evaluation of 
students’ solutions; however, they are not descriptive enough to 
provide insight regarding specific patterns in student solutions. 
Without a more detailed description, it is hard for a designer to 
understand where new interventions need to be implemented to 
better facilitate student learning. In this work, we seek to remedy 
this problem by automatically extracting fine-grained conceptual 
features using unsupervised learning directly from two-
dimensional descriptions of towers. These features allow us to 
investigate the solution space at a higher level of detail. 
Our conceptual feature extraction process takes as input log files 
from all student play sessions and outputs all student towers as 
feature vectors that represent the towers’ structural components. 
The process consists of the four steps illustrated in Figure 2 and 
discussed in turn in the next sections. First, we discretize the rep-
resentations of all towers in the raw log files using a two-
dimensional grid. Second, we generate grammatical rules based 
on the discretized representations using a novel algorithm of our 
own design: the Exhaustive Rule Generator (ERG), which induces 
a two-dimensional grammar returning an exhaustive set of rules 
capable of parsing the entire set. Third, the discrete representa-
tions are parsed using the rules generated by ERG, which returns a 
set of parse trees describing each tower in a hierarchical fashion. 
Finally, we process the parse trees to generate a set of feature 
vectors that denote which concepts from the grammar are present 
within each tower. 

2.1 Discretization 
The first step in the conceptual feature extraction process is dis-
cretization, or gathering meaningful data from the logs and con-
verting it from a continuous two-dimensional space into a discrete 
two-dimensional space. The input to this step is the raw student 
log data, which contains action-by-action traces of student play 
sessions at replay fidelity. The logs generated by RumbleBlocks 
are intended to be post-processed through a replay analysis engine 
[9] which allows researchers to play logs back through an active 
instance of the game engine in order to extract information from 
live game states. Using this approach we are able to access infor-
mation on individual game objects, such as collision information 
or bounding box dimensions, without having to log everything at 
the time of play. Since the logs are being replayed within the same 
game engine, the replayed game states are consistent with what 
students experienced. 
To convert the continuous data from RumbleBlocks into discrete 
data we utilized a binning process. To bin a tower, the coordinates 
of the extents of each block’s bounding box (the smallest rectan-
gle which can be drawn around the block, a property accessible in 
the active game state) are translated such that the bottom left cor-
ner of the tower is at position (0,0). After translation, all of the 
edge coordinates of each block are divided by the size of the 

 
Figure 1. An example level from RumbleBlocks. The alien 

is stranded on the cliff and players must build a tower 
which is tall enough to reach him while also covering all 

blue “energy balls” to power his spaceship. 

 
Figure 2. The Conceptual Feature Extraction Process.  



smallest block (a square), creating a unit grid. Finally, the edges 
of blocks are rounded to their nearest integer positions (e.g., an x 
position of 1.6 would be rounded to 2), in effect “snapping” 
blocks to grid positions, which helps to ensure that clear divisions 
can be drawn between blocks because some blocks are slightly out 
of alignment. After binning, we output the discretized towers as a 
set of blocks described by their type and converted left, right, top 
and bottom values. The block type is the concatenation of the 
original block’s shape (cube, rectangle etc.) and its rotation about 
the z-axis rounded to the nearest 15 degrees (for example the “rec-
tangle” block with a 90 degree angle would now have “rectan-
gle90” as its type). Thus, the final tower is discrete and comprised 
of blocks binned to a unit grid. 

2.2 Exhaustive Rule Generation (ERG) 
Once all of the student log data has been converted into discre-
tized towers, we can automatically generate features describing 
the spatial aspects of these towers using two-dimensional context-
free grammars. These grammars, which have been used to per-
ceive structure in pictures, are an extension of 1D grammars for 
strings [4]. The grammar used in our approach are simplification 
of probabilistic two-dimensional context-free grammars, which 
have been used in previous work to teach an artificial agent to 
learn to perceive tutor interfaces [16]. Our approach is slightly 
different than this previous work in that we do not need to choose 
a single best parse of a tower but instead want to extract all of the 
spatial features present in the tower. This makes the rule probabil-
ities from [16] unnecessary and so we omit them. Additionally, 
the towers in the RumbleBlocks task are much more complicated 
than the grid layout of the tutoring system interfaces explored in 
the previous work. Despite these differences, the spirit of our 
work is the same. We are using context-free grammars to perform 
representation learning.  
Before explaining how we automatically generate a grammar we 
give a description of how they are structured. A two-dimensional 
context-free grammar is represented by a 4-tuple G = <S,V,E,R>. 
S is the start symbol, which in our case represents the concept of a 
complete tower. V represents the set of nonterminal symbols, 
which represent the structural components of a tower. In the trivi-
al case these nonterminals represent terminals, i.e. individual 
blocks or space, but more complicated nonterminals represent 
intermediate structures, e.g. a pair of blocks stacked on one anoth-
er, or even entire towers. E is the set of terminal symbols, which 
in our task represent the blocks and filler space. Finally, R is the 
set of rules, which describe how nonterminal symbols can decom-
pose into other terminal and nonterminal symbols, as well as the 
direction (vertical, horizontal, or unary) in which they decompose. 
Because our rules capture the relative positions between blocks 
and the spaces between them (vertically and horizontally adja-
cent), we do not need to store position information. To clarify, our 

rules have the following form: 
NT  BOTTOM TOP [vertical] 
NT  LEFT RIGHT [horizontal] 
NT  block [unary] 

Where NT, BOTTOM, TOP, LEFT, and RIGHT are nonterminal 
symbols, i.e.∈V, and block is a terminal symbol, i.e.∈E. The 
vertical rule can be used to parse the two structures, BOTTOM 
and TOP, into the NT structure if they are vertically adjacent, 
horizontally aligned (the values of their left extents and right ex-
tents are equal), have equal width, and if the BOTTOM structure is 
below the TOP structure. Similarly, the horizontal rule can be 
used to parse the two structures, LEFT and RIGHT, into the NT 
structure if they are horizontally adjacent, vertically aligned, have 
equal height, and if the LEFT structure is to the left of the RIGHT 
structure. Finally, the unary rule allows the block symbol to be 
parsed into NT; no additional constraints apply for unary rules. 
We utilize Chomsky Normal Form to represent our rules because 
it allows for polynomial time parsing using the CKY algorithm 
[6], so every nonterminal decomposes into a pair of nonterminals 
or a single terminal symbol. Note that for convenience, we also 
have unary start rules that point to nonterminals representing en-
tire towers. Even though this is in violation of Chomsky Normal 
Form, we only have these special rules at the top-most level so it 
does not have an effect on parsing complexity. See Figure 3 for an 
example of how a grammar can be used to parse a tower. 
Before we can parse discretized RumbleBlocks towers we need to 
generate a grammar capable of parsing the set of towers. One 
difficulty is that most towers are not initially parsable because 
their blocks don’t align cleanly, which is needed for matching 
vertical and horizontal grammar rules. To deal with the problem 
that not all towers are completely rectangular in shape, we intro-
duce a new ‘space’ terminal symbol that has unit size, i.e. takes 
up one grid cell, and fill in all of the negative space in a tower 
with these symbols. 
While introducing ‘space’ symbols enables us to parse towers that 
have space in them, it also causes an additional problem. First, we 
plan on automatically generating new nonterminals for blocks that 
are adjacent to one another. Because there are so many ways to 
pair up ‘space’ symbols we end up bloating the grammar with 
unnecessary nonterminals that all reduce to space. Furthermore, 
this explosive number of nonterminal symbols also pair up with 
meaningful block symbols causing the grammar to grow even 
larger. To prevent grammar bloat we seed our initial grammar 
with the following recursive space rules: 

NSPACE  space [unary] 
NSPACE  NSPACE NSPACE [vertical] 
NSPACE  NSPACE NSPACE [horizontal] 

 
Figure 3. An example of how grammar (a) can be used to describe towers (b and c).  

The extra space and alignment rules of the grammar are omitted for clarity.  
 



We also ensure that no additional nonterminals that reduce solely 
to space are introduced during automatic grammar generation.  
Once we augment the towers with ‘space’ symbols we use the 
novel Exhaustive Rule Generator (ERG) Algorithm (see Algo-
rithm 1) to recursively generate a nonterminal for every pair of 
adjacent structures. The input to the algorithm is a set of towers 
and a start symbol. The algorithm starts by creating an empty 
grammar (seeded with recursive space rules), adds terminals for 
all of the blocks and the space symbol, creates an empty collection 
of remembered structures (used to ensure multiple nonterminals 
are not generated for the same structure), and iterates through the 
set of towers adding rules for each tower using the recursive Rule-
Gen procedure. 
The Rule-Gen procedure takes a single tower, a grammar, and a 
collection of remembered structures as inputs. It starts by check-
ing if there is already a nonterminal that describes the tower, if 
such a nonterminal exists it is returned. Next, the algorithm 
checks if the tower only contains space, if so the algorithm returns 
the special NSPACE symbol (so any generated grammar integrates 
with the recursive space rules). If neither condition is met then a 
new nonterminal is generated with a unique name and added to 
the grammar. If the structure consists of a single terminal then a 
unary rule is added decomposing the new nonterminal into the 
terminal symbol. An entry in the hash table is created for that 
tower and the nonterminal is returned. If the structure contains 
more than one terminal, it is divided at each location (both hori-
zontal and vertical) where the structure can be divided into two 
sub-structures (without splitting a terminal). For each division, the 
Rule-Gen procedure is called on the sub-structures and a rule is 
added mapping the new nonterminal to the nonterminals repre-
senting each sub-structure. The direction of this rule is determined 

by the direction of the division. After adding rules for all divi-
sions, an entry is added to the collection mapping the structure to 
the new nonterminal and the nonterminal is returned.  
The result of the ERG algorithm is a grammar that contains a 
nonterminal for every structure present in the set of towers. How-
ever, one subtle problem remains. Two towers that are nearly 
similar, but are unaligned and consequently have an additional 
‘space’ somewhere in the tower end up sharing no intermediate 
nonterminal symbols in their parses, see the differences between 
towers (b) and (c) in Figure 3. This is a problem because we are 
using nonterminals to model spatial features common across tow-
ers. To counter this effect, we introduce a set of “alignment rules” 
for every nonterminal NT in our grammar: 

NT  NT NSPACE [vertical] 
NT  NSPACE NT [horizontal] 
NT  NT NSPACE [horizontal] 

These rules triple the number of grammar rules, but add additional 
parses to towers so that they share common structure with other 
similar but differently aligned towers, see Figure 4. We have two 
horizontal rules so that we can have additional space on the left 
and right of a symbol, but we only have one vertical rule because 
we can have additional negative space on the top of a block, but 
not on the bottom, because blocks in RumbleBlocks are subject to 
gravity and any space below a block would be filled by the block 
falling into a new position. It is important to note that while these 
rules enable the towers to share similar structure, it does not give 
them identical parses. This enables us to relate similar structures 
using their parse trees without having to worry about truly differ-
ent towers being lumped together. 

2.3 Parsing 
After generating a grammar, we can use it to parse the towers and 
determine all of the nonterminal symbols that can be derived from 
each tower. We use a modified version of the CKY algorithm [6] 
that functions over two dimensions instead of one. This algorithm, 
which utilizes dynamic programming, is an approach to bottom-
up parsing in polynomial time. One feature of the CKY algorithm 
is that the amount of time required to compute all parses of a tow-
er is the same as the amount of time required to compute one 
parse. Using this approach, we produce all of the parses for every 
tower in our set. 

2.4 Feature Vector Generation 
Once we have all of the parse trees, we convert them into feature 
vectors. This converted format is useful because the vector repre-
sentation is more concise and easier to manipulate when doing 
analyses. To create a feature vector we create a one-dimensional 
vector with an integer value for every nonterminal in the gram-

 
Figure 4. The two possible parses of tower (c) after align-
ment rules are added. Notice that the rules in the red tree 

are now similar to the rules in tower (b)’s parse tree. 



mar. These values are initialized to be 0 but are set to 1 for every 
nonterminal that appears in at least one of a given tower’s parse 
trees, similar to previous work [17]. Thus, a feature vector is a 
concise description of all the structures that are present in all of 
the parses of a given tower. Once we have generated these feature 
vectors, we can use them to perform a variety of analyses as we 
will demonstrate next. 

3. Data 
The data we present here comes from a large formative evaluation 
of RumbleBlocks, which was performed in two local area elemen-
tary schools. The sample includes play sessions from 174 students 
from grades K-3 (5-8 years old) who played the game for a total 
of 40 min across 2 sessions. The game contained 39 different 
levels, each intended to target a specific principle of stability 
through the use of the energy balls as scaffolding. Players played 
an average of 17.8 unique levels (σ =7.2), as not all students com-
pleted the entire game. Additionally, because students are allowed 
to retry levels in which they fail, the data can contain multiple 
attempts by a student on each level (μ =1.24, σ =.68). In total, the 
dataset contains 6317 unique structures created by students. 
Due to constraints of the conceptual feature extraction process 
some data had to be excluded from analysis. The parsing process 
requires that blocks be aligned to a grid such that clear separations 
can be drawn between them—because of this it was necessary to 
omit any structures where the binning process caused blocks to 
overlap the same grid cell (less than 0.2% of data). Additionally, 
rotating a block will sometimes cause its bounding box to inter-
sect with adjacent grid cells, because the bounding box expands to 
encompass the maximum left, right, top, and bottom values of the 
block’s geometry rather than rotating with it. To address these 
issues of grid overlap we exclude any record that contained blocks 
whose dimensions intersected or any blocks whose z-axis rotation 
was not a multiple of 90, after rounding to the nearest 15 degrees. 
Overall these constraints exclude ~3.5% of our sample.  
The final grammar generated from the dataset by the ERG algo-
rithm contains 13 terminals, 6,010 nonterminals, and 30,923 rules. 
Each nonterminal was used an average of 50.59 times (σ =240.2) 
across all towers. The average number of levels in which a given 
nonterminal was used was 3.09 (σ =4.14). The average number of 
nonterminals per towers was 49.96 (σ =40.23). Reporting statistics 
on the number of nonterminals within an average parse or number 
of parses within an average tower is complicated by the inclusion 
of alignment rules which add some arbitrary number of parses to 
each tower. 

4. CLUSTER ANALYSIS 
In order to demonstrate the utility of these conceptual features to 
guide the design process in educational games, we performed a 
clustering analysis of student solutions in RumbleBlocks, to dis-
cern how many solutions students were demonstrating. Clustering 
takes a series of data points, in our cases represented by conceptu-
al feature vectors, and assigns them to groups based on how simi-
lar the points are. Clustering similar to ours has been used by 
Andersen and Liu et al. to group game states as a way of explor-
ing common paths that players take through a game [18]. Our 
approach differs from theirs in that our features are machine 
learned rather than defined by designers. This allows us to ob-
serve emergent patterns in play without biasing the results with 
human input. 

4.1 Method 
As we were interested in what kinds of solutions students were 
using on each level, we performed clustering of solutions on a 

level-by-level basis, which will yield groups of similar student 
solutions. Within each level we utilized the k-means clustering 
algorithm (we use the scikit-learn implementation [22]). This 
algorithm takes as input a set of data and a parameter k, where 
each datum is described by an n-dimensional vector and k speci-
fies the number of desired clusters. The output is a set of labels 
assigning each datum to a particular cluster. The algorithm works 
by using the k-means++ approach [3] to select initial centroids for 
the clusters such that they are generally distant from one another. 
This initialization algorithm guarantees that the solution found 
will be O(log k) competitive to the optimal solution. Given the 
initial centroid positions, the data points are then assigned to the 
clusters based on which centroid they are nearest to, as measured 
by the Euclidian distance between the n-dimensional vectors of 
the point and the centroid. Once the points are assigned, the posi-
tions of the centroids are updated relative to the points they en-
compass. This process (also called hard expectation-
maximization) is then repeated until quiescence. Although the 
worst-case running time is known to be super polynomial in the 
size of the input, in practice the algorithm finds solutions reasona-
bly quickly [2]. For a given run of k-means we repeat this process 
10 times and select the model that has the best fit to the data, 
which is measured by the within cluster sum squared distance 
from every point to its centroid. Running the algorithm multiple 
times helps to avoid local maximums and accounts for the inher-
ent non-deterministic nature of the algorithm. 
As we are also interested in how many solutions are present in the 
data, not just which solutions are similar, we therefore must de-
termine the correct number of clusters to use, in essence choosing 
a good value for k. To identify the number of clusters present in 
the data, we use the G-means algorithm, which acts as a wrapper 
around the k-means algorithm [8]. This approach starts by running 
k-means on the entire dataset with k initialized to 1. The algorithm 
then takes the clusters of points returned by the previous k-means 
and attempts to divide each of them into two further sub-clusters, 
again using k-means with k=2. A vector is then drawn between 
the two new sub-clusters’ centroids, which represents the dimen-
sion over which the two clusters are separated. The algorithm then 
projects all the points from both sub-clusters onto this single di-
mension of separation and checks to see if they have a Gaussian 
distribution using the Anderson-Darling statistic (with p < 0.01). 
If the distribution is found to not be Gaussian, the original value 
of k is incremented and the process is repeated for all clusters. 
Once all of the clusters are found to have a Gaussian distribution, 
the final k value is returned, representing a good number of 
groups in the dataset. This approach has been shown to be more 
effective than BIC at deciding the correct value for k [8]. Because 
k-means returns different clusters on different runs, we run the G-
means algorithm 10 times and return the mode k value as the most 
likely value for k. 
Before using the machine clustering to conduct analyses, we must 
first ensure that it is creating reasonable clusters.  As a test of the 
validity of the clusters, we had two independent coders hand clus-
ter three levels to generate a gold standard with which to compare 
the machine clustering results (κ = 0.88). Additionally, we want to 
evaluate the effectiveness of our approach by comparing it to a 
naïve method of automatic grouping. The naïve method we used 
was to group the towers by direct equability, i.e. assigning all 
towers that have identical discrete representations to the same 
group. This allows us to see how much closer our approach gets to 
human results than a naïve machine approach.  
The selected three levels were chosen because they were part of 
an in-game counterbalanced pre-posttest, which did not use the 



energy ball mechanic, making them less constrained and likely to 
have more variable answers, and therefore pose a greater chal-
lenge in terms of accurate clustering. Additionally, because all 
students were required to play them as part of the pre-post design, 
these levels have some of the largest sample sizes of all levels. 
In comparing different clusterings we report the completeness, 
homogeneity, V-Measure [24], and Adjusted Rand Index (ARI) 
[23] on these three levels for machine clustering and direct equali-
ty using human clustering as a gold standard. These measures 
each evaluate different aspects of clustering results and are stand-
ard metrics of clustering quality. The Completeness score 
measures how well records in the same class are clustered togeth-
er, i.e., how well the clustering put items that should be together 
in the same group. The Homogeneity score measures how well 
records that are different are separated, i.e. when the elements 
within a given cluster are all the same. Because these measures 
are in opposition to each other, we report the V-measure, which 
gives a harmonic balance between the completeness and homoge-
neity scores. Finally, ARI is a measure of clustering accuracy 
adjusted for chance. The measure has a range of [-1, 1] and ap-
proaches 0 when guessing. 
After testing the clustering on a subset of hand-coded levels, we 
also wanted to gauge the validity of the approach on all levels. To 
measure validity we make the assumption that if two towers are 
highly similar they are also likely to both stand or fall in the 
earthquake, though some noise is to be expected due to indetermi-
nacies in the game’s physics engine. Taking this assumption, we 
can again use homogeneity as a way of calculating how consistent 
the success/failure designation is within a cluster. Comparing the 
homogeneity scores of the machine clustering and the random 
clustering of the towers (using the same number of clusters as 
determined by G-means) can tell us if the machine clustering is 
significantly better than that expected by chance. This metric can 
be interpreted as a sanity check to ensure that the clustering is 
actually working on levels that have not been hand labeled. 
After evaluating clustering validity, we can use clustering to get a 
sense of how often players are using designer envisioned solu-
tions. In designing the levels, the game designers tried to make 
each level focus on one of the three targeted principles of stability 
(low center of mass, wide base, symmetry). That is, the designers’ 
intention is that on each level, the configuration of the energy dots 
and the block inventory, are such that the student is led to a solu-
tion that exemplifies the particular principle targeted at that level.  
It is fine, and probably desirable, if levels allows for multiple (and 
unforeseen) solutions. However, what we hope to avoid is levels 
that have a large number of unforeseen solutions that do not ad-
dress the particular principle that the level is intended to target. 
To perform this alignment analysis we had one of the designers of 
RumbleBlocks generate a play session log that represented the 
“answer key” for each level. We then determined which of the 

clusters the intended solution would be grouped into on each level 
and compared the number of towers in that group to the total 
number of towers for that level. This information can help us get a 
sense of the alignment between what designer expectant students 
to do and what players actually do. Having this information can 
help the designers know where to focus future redesign efforts to 
best target discrepancies.  

4.2 Results 
When looking at the measures of clustering effectiveness in Table 
1 we see that the k-means algorithm was able to outperform 
straight equality grouping in ARI and completeness. This can be 
interpreted to mean that k-means clustering is making a higher 
percentage of correct decisions in grouping structures, suggesting 
that the results of clustering can be validly used in further analy-
sis. In all instances, the equality grouping performs better than k-
means clustering in homogeneity score because if direct equality 
is used to assign group labels the resulting groups will be, by def-
inition, perfectly homogeneous. In many instances, this causes the 
V-measure to also be better because V-measure evenly weights 
for completeness and homogeneity. Overall these results can be 
interpreted to mean that clustering along conceptual features of 
towers provides reasonable grouping accuracy when compared to 
human clustering. 
When clustering was performed across all levels, the mean homo-
geneity of the k-means clusters was found to be significantly 
greater than the homogeneity from random grouping of student 
solutions using a two-sample t-test (p < .001). Assuming that 
similar towers would stand or fall together, this further supports 
the idea that the clustering algorithm is not separating similar 
student solutions. 
Overall the clustering algorithm generated an average of 8 clusters 
per level (σ = 3.98), compared to the average number of groups as 
determined by equality grouping 56 (σ = 45.77). The smallest 
number of clusters (2) was seen in the tutorial level, which con-
tains only 1 block and the spaceship allowing for very little differ-
ence between solutions. The highest number of clusters (17) was 
found in a later level (centerOfMass_07) which contains 5 larger 
blocks and 6 energy balls allowing for nuanced differences in 
solution styles. 
Our analysis of what percentage of solutions appear similar to the 
designers’ intended solutions shows a high degree of variability, 
see Figure 5. Some levels, like the tutorial and other earlier levels, 
are found near the higher end of the spectrum because as introduc-
tory levels they do not allow for a large number of solutions. 
However, the levels on the lower end of the spectrum indicate that 
few students actually created the towers envisioned by the design-
ers. These levels warrant a closer investigation to ascertain what 
other kinds of solutions students are producing. For example, 
upon further inspection of the solutions to centerOfMass_07, de-
signed to target the principle of low center of mass, we discovered 

Table 1. Clustering measures (completeness, homogeneity, v-measure, and adjusted rand index) 
means and standard deviations after 10 iterations of clustering.  

Note that equality clustering is constant and so has no standard deviation. 

Level Comparison Completeness (SD) Homogeneity (SD) V-Measure (SD) Adj. Rand Index (SD) 
com_11_noCheck 

(n=251) 
k-means .74 (.06) .57 (.10) .63 (.04) .51 (.08) 
equality .55 (NA) .99 (NA) .71 (NA) .23 (NA) 

s_13_noCheck 
(n=249) 

k-means .83 (.02) .63 (.04) .72 (.02) .47 (.04) 
equality .60 (NA) .99 (NA) .75 (NA) .16 (NA) 

wb_03_noCheck 
(n=254) 

k-means .63 (.02) .80 (.02) .71 (.02) .42 (.02) 
equality .53 (NA) .99 (NA) .69 (NA) .28 (NA) 

 



that a large number of student solutions that did not typify the 
level’s key principle (See Figure 6). While a number of these 
solutions did not actually survive the earthquake the variety of 
atypical solutions points to the need for more guidance. In further 
iterations designers should focus their efforts on these levels to 
consider whether students need more scaffolding. 

5. DISCUSSION 
In this paper we have described a process for conceptual feature 
extraction from logs of gameplay in an educational game. The 
process follows four steps starting with the raw student log files. 
The files are discretized and then used to generate a two-
dimensional context-free grammar that can be used to parse the 
towers and yield a vector of features present in the tower. We 
demonstrated how conceptual features could be used to perform a 
clustering analysis of common student solutions. 
While the results we discussed are specific to RumbleBlocks as-
pects of our approach could be generalized to other games or edu-
cational technology environments by altering some of the steps in 
the process. One example of another game this approach would 
work for is Refraction, which has players redirecting laser beams 
around a grid based board by placing laser splitters to make prop-
er fractions [1,18]. This game already takes place on a grid and so 
would not require a discretization step, but the other steps would 
be applicable. In this game, our approach would learn features 
corresponding to patterns of laser splitters on the grid, which 
could be used to generate feature vectors for each student solution 
and to cluster these feature vectors. These clusters would be simi-
lar to those generated by Liu et al. [18] but the features would be 
automatically generated rather than human tagged.  
When applying our approach more generally, the discretization 
step will always be specific to a particular game or interface, as it 
requires an intimate knowledge of the context. Employing a re-
play analysis engine can assist with discretization by providing a 
standard format [9]. The ERG algorithm is applicable to any dis-
crete two-dimensional representation of structure in which adja-
cency relations are meaningful. Converting parses into feature 
vectors for analysis is a technique that should be applicable to 
most situations.  
The features generated with this method can be used by many 
different kinds of analyses beyond what we present here. For in-
stance, the feature vectors could be used as a way to represent 
game data in a format suitable for DataShop [13], a large open 
repository of educational technology interaction data. A feature 
vector is analogous to the state of a tutoring system interface and 
the changes in the feature vector from step to step correspond to 
the student actions. Additionally, virtual agents, such as SimStu-
dent [20], could use this data representation as a way of under-

standing and interacting with educational games, enabling us to 
model student learning in these contexts. 
While the grammars extracted by our method have proven to be 
useful, they still have some limitations, such as an inability to 
represent towers that cannot be cleanly mapped to a grid or which 
contain overlapping or angled substructures. Making the grammar 
more descriptive would require the relaxing of constraints con-
cerning how nonterminals can be parsed, e.g., not requiring strict 
alignment. Another issue has to do with how many different non-
terminals map to nearly equivalent structures. Even though we 
attempt to minimize this by introducing the alignment and space 
rules, there are still cases where further reductions could be im-
plemented. One potential solution, to address this problem in gen-
eral, is to implement model merging to condense pairs of nonter-
minals that represent similar concepts into single nonterminals 
[15]. The ability to merge similar nonterminals is a promising 
direction for future work. 
In addition to being able to describe more towers, model merging 
would also allow the generalization of grammars to cases we have 
not seen. Because context-free grammars can be used generative-
ly, the generalized grammar could be used to produce novel tow-
ers, similar to the work of Talton et al. [26]. In our case, these 
novel towers would give insight into the as-yet-unseen portions of 
the solution space. Furthermore, the novel towers could be used as 
templates in creating new levels. In future work we will be explor-
ing ways to feed this information, and information from cluster-
ing, directly back into the game development environment.  
The clustering results not only provide the designers of Rumble-
Blocks with a picture of how students are playing their game, they 
also possess further uses beyond assisting design iteration, such as 
exploring research questions. One potential use of the clustering is 
as an empirical measure of how “open” a particular level is, by 
counting how many different clusters, i.e. different solutions, that 
level affords. Using this measure allows researchers to explore the 
interactions of openness with learning and engagement. Exploring 
this interpretation of the clustering results will be a part of our 
ongoing analysis of RumbleBlocks. 
Another intriguing direction for future work would be to explore 
the relationship between the conceptual features and the 
knowledge components [14] used in building towers in Rumble-
Blocks. There may exist a mapping between the substructures 
used in towers and the conceptual knowledge components related 
to stable structures. Exploring this would require measurements of 
how a student’s use of particular structures changed over time and 
how it relates to task performance. If such a mapping exists, then 
our approach would not only be useful for automated feature ex-
traction, but also for automatically building models of conceptual 
knowledge components.  

 
Figure 6. An example of mismatch with designer expecta-
tion and student solution from the centerOfMass_07 level. 

The designer's answer is on the left. 
 

 
Figure 5. Percentage of use of the envisioned solution on a 

level for each level. 
 



6. CONCLUSION 
Framing game experiences in terms of conceptual features can 
help both designers and researchers better understand how stu-
dents interact with their games. The main contribution of this 
paper is an approach for extracting conceptual features from play 
logs within educational games and using these features to perform 
clustering of student solutions. Designers can use the clusterings 
to better understand the space of student solutions and to know 
where to focus their attention to improve student learning experi-
ences. Ultimately we envision feeding back this clustering infor-
mation directly into the game design platform. This information 
can also enable researchers to explore important questions, such 
as how “openness” and difficulty relate to student engagement. 
While our approach was created with the specific two-
dimensional world of RumbleBlocks in mind, it should be general-
izable, and we hope others will find it useful in exploring other 
educational games.  
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